skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barrett, J E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. null (Ed.)
  3. null (Ed.)
  4. The authors examine the effects of 3 interventions designed to support Grades 2–5 children's growth in measuring rectangular regions in different ways. Their findings indicate that creating a complete record of the structure of a 2-dimensional array—by drawing organized rows and columns of equal-sized unit squares—best supported children in conceptualizing how units were built, organized, and coordinated, leading to improved performance. 
    more » « less
  5. Abstract Airborne electromagnetic surveys collected in December 2011 and November 2018 and three soil sampling transects were used to analyze the spatial heterogeneity of shallow (<4 m) soil properties in lower Taylor Valley (TV), East Antarctica. Soil resistivities from 2011 to 2018 ranged from ∼33 Ωm to ∼3,500 Ωm with 200 Ωm assigned as an upper boundary for brine‐saturated sediments. Elevations below ∼50 m above sea level (masl) typically exhibit the lowest resistivities with resistivity increasing at high elevations on steeper slopes. Soil water content was empirically estimated from electrical resistivities using Archie's Law and range from ∼<1% to ∼68% by volume. An increase in silt‐ and clay‐sized particles at low elevations increases soil porosity but decreases hydraulic conductivity, promoting greater residence times of soil water at low elevations near Lake Fryxell. Soil resistivity variability between 2011 and 2018 shows soils at different stages of soil freeze‐thaw cycles, which are caused predominantly by solar warming of soils as opposed to air temperature. This study furthers the understanding of the hydrogeologic structure of the shallow subsurface in TV and identifies locations of soils that are potentially prone to greater rates of thaw and resulting ecosystem homogenization of soil properties from projected increases in hydrological connectivity across the region over the coming decades. 
    more » « less